Space the final frontier


Recommended Posts

Hi all

Thought I would start a thread on anything space related wether it be space travel, astonomy or anything related

NASA Rules Out Earth Impact in 2036 for Asteroid Apophis

Asteroid Apophis was discovered on June 19, 2004. Image credit: UH/IA

› Larger view

post-5203-0-81563100-1357893851_thumb.jp

PASADENA, Calif. -- NASA scientists at the agency's Jet Propulsion Laboratory in Pasadena, Calif., effectively have ruled out the possibility the asteroid Apophis will impact Earth during a close flyby in 2036. The scientists used updated information obtained by NASA-supported telescopes in 2011 and 2012, as well as new data from the time leading up to Apophis' distant Earth flyby yesterday (Jan. 9).

Discovered in 2004, the asteroid, which is the size of three-and-a-half football fields, gathered the immediate attention of space scientists and the media when initial calculations of its orbit indicated a 2.7 percent possibility of an Earth impact during a close flyby in 2029. Data discovered during a search of old astronomical images provided the additional information required to rule out the 2029 impact scenario, but a remote possibility of one in 2036 remained - until yesterday.

"With the new data provided by the Magdalena Ridge [New Mexico Institute of Mining and Technology] and the Pan-STARRS [univ. of Hawaii] optical observatories, along with very recent data provided by the Goldstone Solar System Radar, we have effectively ruled out the possibility of an Earth impact by Apophis in 2036," said Don Yeomans, manager of NASA's Near-Earth Object Program Office at JPL. "The impact odds as they stand now are less than one in a million, which makes us comfortable saying we can effectively rule out an Earth impact in 2036. Our interest in asteroid Apophis will essentially be for its scientific interest for the foreseeable future."

The April 13, 2029, flyby of asteroid Apophis will be one for the record books. On that date, Apophis will become the closest flyby of an asteroid of its size when it comes no closer than 19, 400 miles (31,300 kilometers) above Earth's surface.

"But much sooner, a closer approach by a lesser-known asteroid is going to occur in the middle of next month when a 40-meter-sized asteroid, 2012 DA14, flies safely past Earth's surface at about 17,200 miles," said Yeomans. "With new telescopes coming online, the upgrade of existing telescopes and the continued refinement of our orbital determination process, there's never a dull moment working on near-Earth objects."

NASA detects and tracks asteroids and comets passing close to Earth using both ground and space-based telescopes. The Near-Earth Object Observations Program, commonly called "Spaceguard," discovers these objects, characterizes a subset of them and plots their orbits to determine if any could be potentially hazardous to our planet.

The Near-Earth Object Program Office at JPL manages the technical and scientific activities for NASA's Near-Earth Object Program of the Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena.

For more information about asteroids and near-Earth objects, visit:http://www.jpl.nasa.gov/asteroidwatch Updates about near-Earth objects are also available by following AsteroidWatch on Twitter at http://www.twitter.com/asteroidwatch .

DC Agle 818-393-9011

Jet Propulsion Laboratory, Pasadena, Calif.

[email protected]

Dwayne Brown 202-358-1726

NASA Headquarters, Washington

[email protected]

2013-017

Link to comment
Share on other sites

Hubble Space Telescope

Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe

Like photographers assembling a portfolio of best shots, astronomers have assembled a new, improved portrait of mankind's deepest-ever view of the universe.

post-5203-0-47051400-1357894149_thumb.jp

(Credit: NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team)

› Larger image | 13 MB tif

Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full moon.

The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. By collecting faint light over many hours of observation, it revealed thousands of galaxies, both nearby and very distant, making it the deepest image of the universe ever taken at that time.

The new full-color XDF image is even more sensitive, and contains about 5,500 galaxies even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness of what the human eye can see.

This video zooms into the small areas of sky that the Hubble Space Telescope was aimed at to construct the eXtreme Deep Field, or XDF. The region is located in the southern sky, far away from the glare of the Milky Way, the bright plane of our galaxy. In terms of angular size, the field is a fraction the angular diameter of the full moon, yet it contains thousands of galaxies stretching back across time. (Credit: NASA; ESA; and G. Bacon and Z. Levay, STScI)

› Download video (13 MB mp4)

Magnificent spiral galaxies similar in shape to our Milky Way and the neighboring Andromeda galaxy appear in this image, as do the large, fuzzy red galaxies where the formation of new stars has ceased. These red galaxies are the remnants of dramatic collisions between galaxies and are in their declining years. Peppered across the field are tiny, faint, more distant galaxies that were like the seedlings from which today's magnificent galaxies grew. The history of galaxies -- from soon after the first galaxies were born to the great galaxies of today, like our Milky Way -- is laid out in this one remarkable image.

Hubble pointed at a tiny patch of southern sky in repeat visits (made over the past decade) for a total of 50 days, with a total exposure time of 2 million seconds. More than 2,000 images of the same field were taken with Hubble's two premier cameras: the Advanced Camera for Surveys and the Wide Field Camera 3, which extends Hubble's vision into near-infrared light.

This illustration compares the angular size of the XDF field to the angular size of the full moon. A finger held at arm's length would appear to be about twice the width of the moon in this image. Note that this illustration does not show the actual observation of the XDF relative to the location of the moon. (Illustration Credit: NASA; ESA; and Z. Levay, STScI; Moon Image Credit: T. Rector; I. Dell'Antonio/NOAO/AURA/NSF)

› Larger image

"The XDF is the deepest image of the sky ever obtained and reveals the faintest and most distant galaxies ever seen. XDF allows us to explore further back in time than ever before", said Garth Illingworth of the University of California at Santa Cruz, principal investigator of the Hubble Ultra Deep Field 2009 (HUDF09) program.

This image from 2009 shows an updated version of the Hubble Ultra Deep Field. The new eXtreme Deep Field could be considered a more detailed view of a portion of this image. (Credit: NASA; ESA; G. Illingworth, UCO/Lick Observatory and the University of California, Santa Cruz; R. Bouwens, UCO/Lick Observatory and Leiden University; and the HUDF09 Team)

› Larger image

› More info from HubbleSite.org

The universe is 13.7 billion years old, and the XDF reveals galaxies that span back 13.2 billion years in time. Most of the galaxies in the XDF are seen when they were young, small, and growing, often violently as they collided and merged together. The early universe was a time of dramatic birth for galaxies containing brilliant blue stars extraordinarily brighter than our sun. The light from those past events is just arriving at Earth now, and so the XDF is a "time tunnel into the distant past." The youngest galaxy found in the XDF existed just 450 million years after the universe's birth in the big bang.

Before Hubble was launched in 1990, astronomers could barely see normal galaxies to 7 billion light-years away, about halfway across the universe. Observations with telescopes on the ground were not able to establish how galaxies formed and evolved in the early universe.

Hubble gave astronomers their first view of the actual forms and shapes of galaxies when they were young. This provided compelling, direct visual evidence that the universe is truly changing as it ages. Like watching individual frames of a motion picture, the Hubble deep surveys reveal the emergence of structure in the infant universe and the subsequent dynamic stages of galaxy evolution.

The infrared vision of NASA's planned James Webb Space Telescope will be aimed at the XDF. The Webb telescope will find even fainter galaxies that existed when the universe was just a few hundred million years old. Because of the expansion of the universe, light from the distant past is stretched into longer, infrared wavelengths. The Webb telescope's infrared vision is ideally suited to push the XDF even deeper, into a time when the first stars and galaxies formed and filled the early "dark ages" of the universe with light.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington.

Related Link

› More on the Hubble eXtreme Deep Field from HubbleSite.org

Link to comment
Share on other sites

Hubble Space Telescope

Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe

Like photographers assembling a portfolio of best shots, astronomers have assembled a new, improved portrait of mankind's deepest-ever view of the universe.

post-5203-0-80816900-1357894940_thumb.jp

(Credit: NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team)

Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full moon.

The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. By collecting faint light over many hours of observation, it revealed thousands of galaxies, both nearby and very distant, making it the deepest image of the universe ever taken at that time.

The new full-color XDF image is even more sensitive, and contains about 5,500 galaxies even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness of what the human eye can see.

This video zooms into the small areas of sky that the Hubble Space Telescope was aimed at to construct the eXtreme Deep Field, or XDF. The region is located in the southern sky, far away from the glare of the Milky Way, the bright plane of our galaxy. In terms of angular size, the field is a fraction the angular diameter of the full moon, yet it contains thousands of galaxies stretching back across time. (Credit: NASA; ESA; and G. Bacon and Z. Levay, STScI)

› Download video (13 MB mp4)

Magnificent spiral galaxies similar in shape to our Milky Way and the neighboring Andromeda galaxy appear in this image, as do the large, fuzzy red galaxies where the formation of new stars has ceased. These red galaxies are the remnants of dramatic collisions between galaxies and are in their declining years. Peppered across the field are tiny, faint, more distant galaxies that were like the seedlings from which today's magnificent galaxies grew. The history of galaxies -- from soon after the first galaxies were born to the great galaxies of today, like our Milky Way -- is laid out in this one remarkable image.

Hubble pointed at a tiny patch of southern sky in repeat visits (made over the past decade) for a total of 50 days, with a total exposure time of 2 million seconds. More than 2,000 images of the same field were taken with Hubble's two premier cameras: the Advanced Camera for Surveys and the Wide Field Camera 3, which extends Hubble's vision into near-infrared light.

This illustration compares the angular size of the XDF field to the angular size of the full moon. A finger held at arm's length would appear to be about twice the width of the moon in this image. Note that this illustration does not show the actual observation of the XDF relative to the location of the moon. (Illustration Credit: NASA; ESA; and Z. Levay, STScI; Moon Image Credit: T. Rector; I. Dell'Antonio/NOAO/AURA/NSF)

› Larger image

"The XDF is the deepest image of the sky ever obtained and reveals the faintest and most distant galaxies ever seen. XDF allows us to explore further back in time than ever before", said Garth Illingworth of the University of California at Santa Cruz, principal investigator of the Hubble Ultra Deep Field 2009 (HUDF09) program.

This image from 2009 shows an updated version of the Hubble Ultra Deep Field. The new eXtreme Deep Field could be considered a more detailed view of a portion of this image. (Credit: NASA; ESA; G. Illingworth, UCO/Lick Observatory and the University of California, Santa Cruz; R. Bouwens, UCO/Lick Observatory and Leiden University; and the HUDF09 Team)

› Larger image

› More info from HubbleSite.org

The universe is 13.7 billion years old, and the XDF reveals galaxies that span back 13.2 billion years in time. Most of the galaxies in the XDF are seen when they were young, small, and growing, often violently as they collided and merged together. The early universe was a time of dramatic birth for galaxies containing brilliant blue stars extraordinarily brighter than our sun. The light from those past events is just arriving at Earth now, and so the XDF is a "time tunnel into the distant past." The youngest galaxy found in the XDF existed just 450 million years after the universe's birth in the big bang.

Before Hubble was launched in 1990, astronomers could barely see normal galaxies to 7 billion light-years away, about halfway across the universe. Observations with telescopes on the ground were not able to establish how galaxies formed and evolved in the early universe.

Hubble gave astronomers their first view of the actual forms and shapes of galaxies when they were young. This provided compelling, direct visual evidence that the universe is truly changing as it ages. Like watching individual frames of a motion picture, the Hubble deep surveys reveal the emergence of structure in the infant universe and the subsequent dynamic stages of galaxy evolution.

The infrared vision of NASA's planned James Webb Space Telescope will be aimed at the XDF. The Webb telescope will find even fainter galaxies that existed when the universe was just a few hundred million years old. Because of the expansion of the universe, light from the distant past is stretched into longer, infrared wavelengths. The Webb telescope's infrared vision is ideally suited to push the XDF even deeper, into a time when the first stars and galaxies formed and filled the early "dark ages" of the universe with light.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington.

Related Link

› More on the Hubble eXtreme Deep Field from HubbleSite.org

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Recently Browsing   0 members

    • No registered users viewing this page.

Community Software by Invision Power Services, Inc.